首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6363篇
  免费   1058篇
  国内免费   659篇
化学   4716篇
晶体学   55篇
力学   315篇
综合类   15篇
数学   716篇
物理学   2263篇
  2024年   10篇
  2023年   174篇
  2022年   168篇
  2021年   231篇
  2020年   308篇
  2019年   287篇
  2018年   234篇
  2017年   230篇
  2016年   354篇
  2015年   331篇
  2014年   381篇
  2013年   461篇
  2012年   605篇
  2011年   636篇
  2010年   406篇
  2009年   408篇
  2008年   397篇
  2007年   379篇
  2006年   308篇
  2005年   282篇
  2004年   193篇
  2003年   179篇
  2002年   145篇
  2001年   106篇
  2000年   89篇
  1999年   111篇
  1998年   94篇
  1997年   91篇
  1996年   82篇
  1995年   68篇
  1994年   59篇
  1993年   49篇
  1992年   58篇
  1991年   37篇
  1990年   29篇
  1989年   28篇
  1988年   20篇
  1987年   14篇
  1986年   8篇
  1985年   12篇
  1984年   5篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1957年   1篇
排序方式: 共有8080条查询结果,搜索用时 265 毫秒
91.
The bonding situation in the tricoordinated beryllium phenyl complexes [BePh3], [(pyridine)BePh2] and [(trimethylsilyl-N-heterocyclic imine)BePh2] is investigated experimentally and computationally. Comparison of the NMR spectroscopic properties of these complexes and of their structural parameters, which were determined by single crystal X-ray diffraction experiments, indicates the presence of π-interactions. Topology analysis of the electron density reveals elliptical electron density distributions at the bond critical points and the double bond character of the beryllium-element bonds is verified by energy decomposition analysis with the combination of natural orbital for chemical valence. The present beryllium-element bonds are highly polarized and the ligands around the central atom have a strong influence on the degree of π-delocalization. These results are compared to related triarylboranes.  相似文献   
92.
The key to type 1 copper (T1Cu) function lies in the fine tuning of the CuII/I reduction potential (E°′T1Cu) to match those of its redox partners, enabling efficient electron transfer in a wide range of biological systems. While the secondary coordination sphere (SCS) effects have been used to tune E°′T1Cu in azurin over a wide range, these principles are yet to be generalized to other T1Cu-containing proteins to tune catalytic properties. To this end, we have examined the effects of Y229F, V290N and S292F mutations around the T1Cu of small laccase (SLAC) from Streptomyces coelicolor to match the high E°′T1Cu of fungal laccases. Using ultraviolet-visible absorption and electron paramagnetic resonance spectroscopies, together with X-ray crystallography and redox titrations, we have probed the influence of SCS mutations on the T1Cu and corresponding E°′T1Cu. While minimal and small E°′T1Cu increases are observed in Y229F- and S292F-SLAC, the V290N mutant exhibits a major E°′T1Cu increase. Moreover, the influence of these mutations on E°′T1Cu is additive, culminating in a triple mutant Y229F/V290N/S292F-SLAC with the highest E°′T1Cu of 556 mV vs. SHE reported to date. Further activity assays indicate that all mutants retain oxygen reduction reaction activity, and display improved catalytic efficiencies (kcat/KM) relative to WT-SLAC.  相似文献   
93.
The urgent need for fresh water resource is a public issue facing the world. Solar distillation for seawater desalination is a promising freshwater production method. Interfacial solar evaporation systems based on 2D photo-thermal membranes have been widely studied, but salt pollution is one of the main challenges for solar distillation. In order to solve this problem, a hydrophilic three-dimensional (3D) porous photo-thermal fiber felt (PFF) was obtained by one-step method, through a simple polydopamine (PDA) coating method with hydrophobic graphite felt as a substrate. The PFF had a good evaporation rate of 1.48 kg m?2 h-1 and its corresponding light-vapor conversion efficiency reached 87.4%. In addition, the PFF exhibited an excellent salt-resistant ability when applied to photo-thermal evaporation of high-salinity seawater with 10 wt% NaCl, owing to its intrinsic 3D macroporous structure for the migration circulation of salt ions. The development of the PFF offers a new route for the exploration of salt-resistant photo-thermal materials and is promising for the practical application of solar distillation.  相似文献   
94.
Rhodium(III)-catalyzed [4 + 1] cyclization of azobenzenes with α-Cl ketones has been developed. 3-Acyl-2H-indazoles could be easily afforded in up to 97% yields for more than 30 examples. The obtained products are potentially valuable in organic synthesis and drug discovery. This protocol featured with high efficiency, extensive functional group tolerance and mild reaction conditions. The one-step efficient construction of an anti-inflammatory agent confirms the practicability of this procedure.  相似文献   
95.
An electron-deficient [CpERhCl2]2 catalyzed annulation of N-pentafluorophenylbenzamides with internal alkynes was successfully established under mild reaction conditions, with the assistance of Lewis acid silver salt. Particularly, electron-deficient benzamide substrates were smoothly transformed into the desired products in this catalytic system. The catalytic system showed a broad tolerance for different substituents on the aromatic rings or aryl, alkyl-substituted alkynes.  相似文献   
96.
王京  张翠  郭东升  丁飞 《化学教育》2021,42(18):121-124
面对不同年级本科生和研究生设计了由浅入深、梯度渐进的核磁共振实验教学体系,利用实验教学全面介绍了核磁共振这一重要的分析手段,结合线上教学、课堂互动等新颖的教学模式,加深对重要知识点的认识和了解,与理论教学有机结合,取得了良好的教学效果。  相似文献   
97.
王玉冰  陈杰  延卫  崔建文 《化学进展》2021,33(5):838-854
共轭微孔聚合物(CMPs)是一类有机多孔聚合物,与常规共轭聚合物或多孔材料相比,其最大的特点是既有π共轭骨架又具有大量微孔。这类材料在解决能源和环境问题方面显示出巨大的潜力,已在气体吸附、非均相催化、发光材料、化学传感器、电能存储和生物杂化物等领域显示出巨大的应用前景。目前已开发出多种用于CMPs结构单元设计与合成的新方法,用于制备具有不同结构和特定性质的多种CMPs,有效推动了该领域的快速发展。本综述总结了CMPs的理论模型和结构设计,合成原理、常用合成方法和影响因素分析,以及CMPs在各领域的应用。  相似文献   
98.
Cyclodextrins (CDs) are a series of cyclic oligosaccharides formed by amylose under the action of CD glucosyltransferase that is produced by Bacillus. After being modified by polymerization, substitution and grafting, high molecular weight cyclodextrin polymers (pCDs) containing multiple CD units can be obtained. pCDs retain the internal hydrophobic-external hydrophilic cavity structure characteristic of CDs, while also possessing the stability of polymer. They are a class of functional polymer materials with strong development potential and have been applied in many fields. This review introduces the research progress of pCDs, including the synthesis of pCDs and their applications in analytical separation science, materials science, and biomedicine.  相似文献   
99.
Sarcaglarols A—D ( 1 — 4 ), two pairs of lindenane?monoterpene heterodimers fused by a 1,2‐dioxane moiety, were discovered and isolated from the leaves of Sarcandra glabra guided by MS/MS molecular networking‐based strategy. Their planar structures, absolute configurations of basic skeleton and flexible polyhydric side chain were established by analysis of HRESIMS, NMR spectroscopic data, ECD spectrum, and the X‐ray diffraction study of isopropylidene derivatives. An intermolecular [2+2+2] cycloaddition may play a key role in the biosynthesis pathway of the 1,2‐dioxane moiety fused lindenane?monoterpene heterodimer skeleton, which can be recognized as the biogenetic precursors of our previous reported lindenane?normonoterpene conjugates. In addition, compounds 1 , 3 and 4 exhibited moderate inhibitory effects of lipid accumulation in free fatty acid‐exposed L02 cells.  相似文献   
100.
Surface modification by poly(ethylene glycol) (PEGylation) has been acknowledged as a powerful strategy in minimizing non-specific reactions for biomedical devices. Once applied into manufacture of drug/gene delivery systems, PEGylation has demonstrated to significantly improve their biocompatibility and stealthiness in physiological environment. Nonetheless, reluctant cell membrane affinities thus cellular uptake efficiencies owing to PEGylation brought up further issues that are imperative to be resolved. Pertain to this PEGylation dilemma, we attempted to introduce peptide (GPLGVRG) linkage between block copolymer of PEG-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} PAsp(DET), wherein the cationic PAsp(DET) could self-assemble with pDNA into nanoscaled complex core. Noteworthy was the peptide linkage whose amino acids sequence could be specifically recognized and degraded by matrix metalloproteinases (MMPs) (overexpressed in extracellular milieu of tumors). Therefore, our subsequent studies validated facile detachment of PEGylation from the aforementioned polyplex micelles upon treatment of MMPs, which elicited improved cytomembrane affinities and cellular uptake efficiencies. In addition, promoted escape from endosome entrapment was also confirmed through direct endosome membrane destabilization by PAsp(DET), which was further elucidated to be attributable to dePEGylation as well as elevated charged density of PAsp(DET) in acidic endosomes. These benefits from dePEGylation eventually contributed to promoted gene expression at the affected cells and potent tumor growth suppression based on anti-angiogenic approach. Therefore, our developed strategy has provided a facile approach in overcoming the dilemma of PEGylation, which could be informative in design of drug/gene delivery systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号